
J. Vis. Commun. Image R. 73 (2020) 102960

A
1

Contents lists available at ScienceDirect

J. Vis. Commun. Image R.

journal homepage: www.elsevier.com/locate/jvci

Full length article

Analytical derivatives for differentiable renderer: 3D pose estimation by
silhouette consistency✩

Zaiqiang Wu a, Wei Jiang a,∗, Hongyan Yu b

a The State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China
b Beijing Electro-mechanical Engineering Institute, Beijing 100074, China

A R T I C L E I N F O

Keywords:
Inverse graphics
Differentiable renderer
3D pose estimation

A B S T R A C T

Differentiable renderer is widely used in optimization-based 3D reconstruction which requires gradients for
optimization. The existing differentiable renderers obtain gradients via numerical techniques. However, these
methods are inaccurate and inefficient. Motivated by this fact, we propose a differentiable renderer with
analytical gradients. The main obstacle of traditional renderer being differentiable is the discrete sampling
operation of rasterization. To obtain a differentiable rasterization renderer, we define pixel intensity as a
double integral over the pixel grid, and then derive the analytical gradients with respect to vertices. 3D pose
estimation by multi-viewpoint silhouettes is conducted to reveal the effectiveness and efficiency of the proposed
method. Experimental results show that 3D pose estimation without 3D and 2D joint supervision can produce
competitive results. The findings also indicate that the proposed method has higher accuracy and efficiency
than previous differentiable renderers.
1. Introduction

In recent years, deep learning techniques have achieved impressive
success in computer vision. Researchers can design various network
structures according to their specific intentions. All operations in the
network must be differentiable to enable the training of network pa-
rameters by back-propagation algorithm. However, some operations
cannot obtain derivatives trivially. For instance, tasks of shape-from-
silhouette require differentiable rendering operation to construct the
loss function for supervision. However, the traditional rendering algo-
rithms (e.g., rasterization and ray tracing [1]) are not differentiable
and cannot be directly applied to deep learning framework due to the
discrete sampling operation.

To address this issue, many researchers attempted to develop a
differentiable renderer to incorporate the rendering operation into
gradient-based optimization framework. To the best of our knowledge,
de La Gorce et al. [2] were the earliest to apply differentiable renderer
in 3D hand pose estimation. Loper et al. [3] proposed a general-purpose
differentiable renderer named OpenDR which can render triangular
meshes into images and automatically acquire derivatives with re-
spect to the model parameters. However, the derivatives of OpenDR
are computed by numerical methods which lack accuracy. Moreover,
OpenDR is incompatible with the existing deep learning framework.
Kato et al. [4] proposed a differentiable renderer for neural networks,

✩ This paper has been recommended for acceptance by Dr Zicheng Liu.
∗ Corresponding author.

but this method still relies on numerical methods to compute deriva-
tives. Liu et al. [5] proposed a differentiable renderer named SoftRas
which only focuses on the rendering of silhouette. This method gen-
erates probability maps for each triangle in the mesh, causing high
memory consumption and blurry rendering results.

We present a differentiable silhouette renderer with analytical
derivatives to address these problems. Our work differs from other
works [2–4] in that our renderer only focuses on synthesizing silhou-
ettes and obtains derivatives by analytical approach. In most cases,
only silhouette information is available in shape-form-silhouette tasks.
Therefore, a differentiable renderer, which only focusing on synthesiz-
ing silhouettes, is significant and sufficient for 3D reconstruction. The
forward pass of our renderer, just like other differentiable renderers, is
similar to rasterization with anti-aliasing. However, the backward pass
of our differentiable renderer is different from those of prior methods
that depend on the access to frame buffers and the derivatives obtained
by numerical methods. The highlight of our work is that the derivatives
of pixel intensities with respect to the coordinates of vertices can be
obtained by our proposed analytical method without the need to access
the frame buffers repeatedly and apply any numerical method.

Our strategy for avoiding discrete sampling is to define pixel in-
tensity as the average value of the area within the pixel region. Pixel
vailable online 27 October 2020
047-3203/© 2020 Elsevier Inc. All rights reserved.

E-mail address: jiangwei_zju@zju.edu.cn (W. Jiang).

https://doi.org/10.1016/j.jvcir.2020.102960
Received 1 November 2019; Received in revised form 27 August 2020; Accepted 2
4 October 2020

http://www.elsevier.com/locate/jvci
http://www.elsevier.com/locate/jvci
mailto:jiangwei_zju@zju.edu.cn
https://doi.org/10.1016/j.jvcir.2020.102960
https://doi.org/10.1016/j.jvcir.2020.102960
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jvcir.2020.102960&domain=pdf


Journal of Visual Communication and Image Representation 73 (2020) 102960Z. Wu et al.

2

2

g
a
t
i
s
m

t
w
r
p
M
e
p
a
t
a
e
a
e
l
w
a
L
c
r
b
t
i

w
l
d
p
i
n

r
m
a
a
e

s
a

v

intensity can be computed by a double integral over the pixel region
of the pixel intensity function. On the basis of the integral expression
of pixel intensity, the expression of derivatives can be derived and
simplified to an analytical form without integral operation. Only silhou-
ette is considered in this study, and thus we do not need to deal with
self-occlusion. The proposed analytical derivatives can facilitate the
backward pass implementation and improve its efficiency. Our main
contributions are summarized as follows:

• We present a novel non-numerical method to obtain the analytical
derivatives with respect to vertex location for silhouette renderer.
In addition, our algorithm can be implemented on GPU and offer
significant speedup in high resolution setups.

• Our experimental results of 3D pose estimation reveal that our
proposed method has higher accuracy and efficiency than prior
unsupervised methods.

• The potential of 3D pose estimation by silhouette consistency
without 2D or 3D joints is shown in the conducted experiments.

. Related work

.1. Differentiable renderer

Computer vision problems have long been regarded as inverse
raphics in the literature. In computer graphics, we aim to render
n image from object shape, texture, and illumination. On the con-
rary, inverse graphics aims to estimate object shape, texture, and
llumination from observed images. Differentiable rendering offers a
traightforward and practical technique to infer the parameters of 3D
odels by gradient-based methods.

Many model-based approaches have been proposed for differen-
iable rendering. Gkioulekas et al. [6] developed an algorithmic frame-
ork to infer internal scattering parameters for heterogeneous mate-

ials. Gradients are leveraged for optimization to solve this inverse
roblem, but this approach is limited to specific illumination problems.
ansinghka et al. [7] introduced a probabilistic graphic model to

stimate scene parameters from observations. de La Gorce et al. [2]
roposed to differentiate the graphics rendering pipeline and use anti-
liasing to obtain derivatives at object boundaries. We apply similar
echniques, but we present an analytical method for computing bound-
ry derivatives. Loper and Black [3] introduced an approximate differ-
ntiable renderer called OpenDR, which is used to render a 3D model
nd automatically obtain derivatives with respect to the model param-
ters. However, OpenDR has no interfaces to popular deep learning
ibrary; thus, it is difficult to incorporate into deep learning frame-
orks. Kato et al. [4] introduced a differentiable rendering pipeline that
pproximates the rasterization gradient with a hand-designed function.
i et al. [8] recently presented a differentiable ray tracer that can
ompute derivatives of scalar function over the rendered image with
espect to arbitrary scene parameters. Nevertheless, the forward and
ackward passes of this method are performed by Monte Carlo ray
racing. Thus, this technique is time consuming and impractical to be
ncorporated into learning-based frameworks.

With the development of deep learning, the forward and back-
ard passes of differentiable rendering have been achieved in a deep

earning framework [9–16]. Nguyen-Phuoc et al. [17] presented Ren-
erNet, a convolutional network that learns a direct map from scene
arameters to corresponding rendered images. However, RenderNet
s computationally expensive because it is composed of convolutional
etworks.

In the present study, we explore a rasterization-based differentiable
enderer with analytical derivatives. The main difference between our
ethod and Neural 3D Mesh Render [4] (N3MR) is that instead of

pproximating the derivatives with hand-designed functions, we derive
n analytical expression to obtain derivatives with considerably high
2

fficiency and accuracy.
2.2. Image-based 3D reconstruction

Inferring 3D shape from images is a traditional and challenging
problem in computer vision. With the surge of deep learning, 3D
reconstruction from monocular images has become an active research
topic.

Most learning-based approaches learn the mapping from 2D images
to 3D shapes with 3D supervision. Several methods predict a depth map
to reconstruct 3D shapes [18,19], whereas others directly predict 3D
shapes [4,20–25]. However, those methods lack details in the generated
results.

To generate detailed 3D shape, deformable models have been in-
corporated into 3D reconstruction framework. For example, statistical
body shape models, such as SMPL [26] and SCAPE [27], are fre-
quently used in 3D pose estimation to generate 3D body meshes. Bogo
et al. [28] proposed an iteratively optimization-based approach to re-
construct 3D human poses and shapes from single image by minimizing
the reprojection error between 2D images and statistical body shape
models. Pavlakos et al. [29] presented an end-to-end framework to
predict the parameters of a statistical body shape model by training
neural networks with monocular images and 3D ground truth.

The 3D ground truth shapes are difficult to obtain. Therefore, 3D re-
construction in unsupervised manner also attracts increasing attention.
Yan et al. [30] proposed perspective transformer nets to infer 3D voxels
from silhouette images in multiple viewpoints. Kato et al. [4] proposed
to reconstruct 3D shapes by training a mesh deforming network with
only 2D silhouette supervision. We follow these works in supervision,
but we use a statistical body shape model named SMPL to represent the
3D shape of human body and optimize the 3D pose with the gradients
obtained by our proposed differentiable renderer.

3. Analytical derivatives for rasterization

In computer graphics, rasterization is the task of computing the
mapping from scene geometry described in vector graphic format to
raster images. The main obstacle that impedes rasterization from be-
ing differentiable is the discrete sampling operation, in which pixel
intensity is sampled only at the central position of each pixel grid. In
addition, aliasing effect often appears in the rendered images due to
discrete sampling operation and limited sampling frequency.

One of the most commonly used anti-aliasing techniques is super-
sampling, which can reduce the magnitude of the discontinuous inten-
sity changes. Inspired by this approach, we can reasonably conclude
that if the sampling frequency is increased to infinity, then the sampling
operation becomes continuous and differentiable. However, because in-
finite sampling frequency cannot be achieved in practice, the sampling
rate is set to a relatively high value to approximate the ideal situation.
The forward pass of our renderer works similarly to the standard
graphics pipeline with anti-aliasing. On the contrary, the backward
derivatives are derived under the hypothesis that the image is sampled
with infinite sampling rate and then down-sampled by an average filter.

3.1. Forward rendering

The forward pass of our proposed differentiable renderer follows
the standard graphics method [31]. We apply anti-aliasing to smooth
the output images to ensure the consistency between the forward and
backward propagation.

Considering the rendering process of the Stanford Bunny model, let
𝑝(𝑥, 𝑦) be the corresponding continuous distribution of intensity in the
creen space, as shown in Fig. 1. Then rasterization can be reinterpreted
s sampling each pixel intensity value within the pixel grid.

We only focus on synthesizing silhouettes; thus, only two possible
alues exist for 𝑝(𝑥, 𝑦), namely, the foreground intensity 𝑝1 and the
background intensity 𝑝0. We suppose that the output image has 𝐻 rows



Journal of Visual Communication and Image Representation 73 (2020) 102960Z. Wu et al.
Fig. 1. (a) The input Stanford Bunny model and (b) the corresponding continuous intensity distribution in screen space.
Fig. 2. The forward rendering process of our differentiable renderer. To make the output silhouette image more smooth, we first render a silhouette image with higher resolution
then down-sample it to get the final output image.
and 𝑊 columns, and the pixel intensity 𝐼(𝑖, 𝑗) in the 𝑖th row and 𝑗th
column can be presented as follows:

𝐼(𝑖, 𝑗) = 1
𝑆 ∬𝛺𝑖,𝑗

𝑝(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 (1)

where 𝛺𝑖,𝑗 represents the pixel grid in the 𝑖th row and 𝑗th column, and
𝑆 denotes the area of the pixel grid.

However, computing the integral expression in Eq. (1) analyti-
cally by programming is difficult. Therefore, we apply anti-aliasing to
evaluate the integral numerically, as shown in Fig. 2.

Let 𝐹 be the multiple of super-sampling, then the pixel intensity of
the 𝑖th row and 𝑗th column can be expressed as follows:

𝐼(𝑖, 𝑗) = 1
𝐹 2

𝐹 2
∑

𝑘=1
𝑝(𝑥𝑘, 𝑦𝑘) (2)

where (𝑥𝑘, 𝑦𝑘) denotes the coordinate of the 𝑘th sampling point in
screen space.

Evidently, we can obtain the following:

lim
𝐹→∞

1
𝐹 2

𝐹 2
∑

𝑘=1
𝑝(𝑥𝑘, 𝑦𝑘) =

1
𝑆 ∬𝛺𝑖,𝑗

𝑝(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 (3)

In the forward rendering pass, high accuracy can be achieved by
setting 𝐹 to a large value, but at the cost of additional performance
overhead. For the trade-off between accuracy and efficiency, we set 𝐹
to 4 in our implementation.

3.2. Derivative computation

The following derivation is based on the assumption that all pixel
intensities are obtained by Eq. (1). Consider an edge consisted of
vertices 𝑣𝑎 and 𝑣𝑏 located at silhouette boundary, the coordinates of
𝑣 and 𝑣 are denoted as (𝑥 , 𝑦 ) and (𝑥 , 𝑦 ), respectively. This edge is
3

𝑎 𝑏 0 0 1 1
assumed to intersect with the pixel grid in the 𝑖th row and 𝑗th column.
The partial derivative 𝜕𝐼(𝑖,𝑗)

𝜕𝑥0
can be written as follows:

𝜕𝐼(𝑖, 𝑗)
𝜕𝑥0

=
𝜕 1
𝑆 ∬𝛺𝑖,𝑗

𝑝(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦

𝜕𝑥0

= 1
𝑆 ∬𝛺𝑖,𝑗

𝜕𝑝(𝑥, 𝑦)
𝜕𝑥0

𝑑𝑥 𝑑𝑦
(4)

For notational convenience, we denote that 𝐴 = 𝑦1−𝑦0, 𝐵 = 𝑥0−𝑥1,
and 𝐶 = 𝑥1𝑦0 − 𝑥0𝑦1. Then the edge equation can be presented as
follows:

𝛼(𝑥, 𝑦) = 𝐴𝑥 + 𝐵𝑦 + 𝐶 (5)

We suppose that if 𝛼(𝑥, 𝑦) < 0, then point (𝑥, 𝑦) is located in the
foreground region, and vice-versa. Let 𝛺0 be an appropriate subregion
of 𝛺𝑖,𝑗 such that 𝛺0 only covers the edge connecting 𝑣𝑎 and 𝑣𝑏. Thus,
the intensity distribution function 𝑝(𝑥, 𝑦) can be written as follows:

𝑝(𝑥, 𝑦) =

{

𝑝1, if 𝛼(𝑥, 𝑦) < 0 and (𝑥, 𝑦) ∈ 𝛺0

𝑝0, if 𝛼(𝑥, 𝑦) > 0 and (𝑥, 𝑦) ∈ 𝛺0
(6)

The equation above can be simplified with the Heaviside step
function ℎ, as follows:

𝑝(𝑥, 𝑦) = 𝑝0ℎ(𝛼(𝑥, 𝑦)) + 𝑝1ℎ(−𝛼(𝑥, 𝑦)), (𝑥, 𝑦) ∈ 𝛺0 (7)

Given that 𝜕𝐼(𝑖,𝑗)
𝜕𝑥0

≠ 0 only if (𝑥, 𝑦) ∈ 𝛺0, thus the partial derivative
𝜕𝐼(𝑖,𝑗)
𝜕𝑥0

can be further rewritten as follows:

𝜕𝐼(𝑖, 𝑗)
𝜕𝑥0

= 1
𝑆 ∬𝛺0

𝜕𝑝(𝑥, 𝑦)
𝜕𝑥0

𝑑𝑥 𝑑𝑦 + 1
𝑆 ∬𝛺𝑖,𝑗−𝛺0

𝜕𝑝(𝑥, 𝑦)
𝜕𝑥0

𝑑𝑥 𝑑𝑦

= 1
𝑆 ∬𝛺0

𝜕𝑝(𝑥, 𝑦)
𝜕𝑥0

𝑑𝑥 𝑑𝑦
(8)



Journal of Visual Communication and Image Representation 73 (2020) 102960Z. Wu et al.

p

v
{

o

r
e
a
p
{

Fig. 3. Illustration of how to determine the lower and upper limits of the integral by Liang–Barsky algorithm. After clipping, two new endpoints 𝑣′𝑎 and 𝑣′𝑏 are obtained. Following
the variable substitution, the coordinates of 𝑣′𝑎 and 𝑣′𝑏 can be transformed to the lower limit 𝑘0 and upper limit 𝑘1.
c
P

𝐿

o

a
z
g

c
t
t
s
e

f
c
i
s

p

a
a
t

Eqs. (7) and (8) are used to obtain the partial derivative 𝜕𝐼(𝑖,𝑗)
𝜕𝑥0

as
follows:
𝜕𝐼(𝑖, 𝑗)
𝜕𝑥0

= 1
𝑆 ∬𝛺0

𝑝0𝛿(𝛼(𝑥, 𝑦))
𝜕𝛼(𝑥, 𝑦)
𝜕𝑥0

− 𝑝1𝛿(𝛼(𝑥, 𝑦))
𝜕𝛼(𝑥, 𝑦)
𝜕𝑥0

𝑑𝑥 𝑑𝑦

=
𝑝1 − 𝑝0

𝑆 ∬𝛺0

𝛿(𝛼(𝑥, 𝑦))(−
𝜕𝛼(𝑥, 𝑦)
𝜕𝑥0

) 𝑑𝑥 𝑑𝑦
(9)

where 𝛿 denotes the Dirac delta function.
Substituting Eq. (5) into Eq. (9), the partial derivative 𝜕𝐼(𝑖,𝑗)

𝜕𝑥0
can be

resented as follows:

𝜕𝐼(𝑖, 𝑗)
𝜕𝑥0

=
𝑝1 − 𝑝0

𝑆 ∬𝛺0

𝛿(𝐴𝑥 + 𝐵𝑦 + 𝐶)(𝑦1 − 𝑦) 𝑑𝑥 𝑑𝑦 (10)

To eliminate the Dirac delta function 𝛿, we perform the following
ariable substitution:

𝑡 = 𝐴𝑥 + 𝐵𝑦
𝑘 = −𝐵𝑥 + 𝐴𝑦

(11)

After variable substitution, Eq. (10) can be rewritten as follows:

𝜕𝐼(𝑖, 𝑗)
𝜕𝑥0

=
𝑝1 − 𝑝0

𝑆(𝐴2 + 𝐵2) ∬
𝛿(𝑡 + 𝐶)(𝑦1 −

𝐵𝑡 + 𝐴𝑘
𝐴2 + 𝐵2

) 𝑑𝑡 𝑑𝑘

=
𝑝1 − 𝑝0

𝑆(𝐴2 + 𝐵2) ∫

𝑘1

𝑘0
(𝑦1 −

𝐴𝑘 − 𝐵𝐶
𝐴2 + 𝐵2

) 𝑑𝑘

=
𝑝1 − 𝑝0

𝑆(𝐴2 + 𝐵2)
((𝑦1 +

𝐵𝐶
𝐴2 + 𝐵2

)(𝑘1 − 𝑘0) −
𝐴(𝑘21 − 𝑘20)

2(𝐴2 + 𝐵2)
)

(12)

where 𝐴2+𝐵2 is the 𝐿2 length of the edge, which considers the Jacobian
f the variable substitution. 𝑘0 and 𝑘1 are the lower and upper limits

of integral, respectively.
To specify 𝑘0 and 𝑘1, we apply Liang–Barsky algorithm [32] to

emove the portion of segment 𝑣𝑎𝑣𝑏 outside the pixel grid. The two new
ndpoints after clipping are denoted as 𝑣′𝑎 and 𝑣′𝑏, and their coordinates
re denoted as (𝑥′0, 𝑦

′
0) and (𝑥′1, 𝑦

′
1) respectively. Fig. 3 illustrates the

rocedure of obtaining the lower and upper limits as follows:

𝑘0 = −𝐵𝑥′0 + 𝐴𝑦′0
𝑘1 = −𝐵𝑥′1 + 𝐴𝑦′1

(13)

Similarly, we can obtain the partial derivatives 𝜕𝐼(𝑖,𝑗)
𝜕𝑦0

, 𝜕𝐼(𝑖,𝑗)
𝜕𝑥1

and
𝜕𝐼(𝑖,𝑗)
𝜕𝑦1

as follows:

𝜕𝐼(𝑖, 𝑗)
𝜕𝑦0

= −
𝑝1 − 𝑝0

𝑆(𝐴2 + 𝐵2)
((𝑥1 +

𝐴𝐶
𝐴2 + 𝐵2

)(𝑘1 − 𝑘0) +
𝐵(𝑘21 − 𝑘20)

2(𝐴2 + 𝐵2)
) (14)

𝜕𝐼(𝑖, 𝑗)
𝜕𝑥1

=
𝑝1 − 𝑝0

𝑆(𝐴2 + 𝐵2)
(−(𝑦0 +

𝐵𝐶
𝐴2 + 𝐵2

)(𝑘1 − 𝑘0) +
𝐴(𝑘21 − 𝑘20)

2(𝐴2 + 𝐵2)
) (15)

𝜕𝐼(𝑖, 𝑗)
𝜕𝑦1

=
𝑝1 − 𝑝0

𝑆(𝐴2 + 𝐵2)
((𝑥0 +

𝐴𝐶
𝐴2 + 𝐵2

)(𝑘1 − 𝑘0) +
𝐵(𝑘21 − 𝑘20)

2(𝐴2 + 𝐵2)
) (16)
4

The derivatives can be obtained without any numerical method
by using these analytical expressions. Thus, further improvement in
accuracy and efficiency can be achieved.

3.3. Backward gradient flow

We consider a 3D mesh consisting of a set of vertices {𝑣1◦, 𝑣2◦,
… , 𝑣0𝑁𝑣

} and faces {𝑓1, 𝑓2,… , 𝑓𝑁𝑓
}. 𝑣𝑜𝑘 ∈ R3 represents the position

of the 𝑘th vertex in the 3D object space, and 𝑓𝑘 ∈ N3 represents the
indices of the three vertices corresponding to the 𝑘th triangle face. To
render this 3D mesh, the vertices {𝑣𝑜𝑘} in the object space are projected
into screen space as vertices {𝑣𝑘}, 𝑣𝑘 ∈ R2.

The scalar loss function over the rendered image for optimization is
denoted as 𝐿. The partial derivatives { 𝜕𝐿

𝜕𝐼(𝑖,𝑗) |𝑖 = 1,… ,𝐻, 𝑗 = 1,… ,𝑊 }
an be computed through automatic differentiable libraries, such as
yTorch and TensorFlow.

Our task is as follows: given the partial derivatives of loss function
with respect to pixel intensities { 𝜕𝐿

𝜕𝐼(𝑖,𝑗) }, we compute the derivatives
f pixel intensities with respect to vertices { 𝜕𝐼(𝑖,𝑗)

𝜕𝑣𝑘
}, and then obtain

the derivatives { 𝜕𝐿
𝜕𝑣𝑘

} using chain rule. The remaining of the work is
preformed by automatic differentiable libraries.

A key observation is that the gradient flow is sparse, because
𝜕𝐼(𝑖,𝑗)
𝜕𝑣𝑘

≠ 0 only if at least one edge consist of 𝑣𝑘 intersected with the
pixel grid of 𝐼(𝑖, 𝑗). This condition allows us to focus on specific 𝑖, 𝑗,
nd 𝑘, such that 𝜕𝐼(𝑖,𝑗)

𝜕𝑣𝑘
≠ 0. Therefore we can skip the pixels with

ero gradient contribution to the current triangle when traversing pixel
rids, and thus improve the efficiency.

In addition, pixels out of the bounding box of the current triangle
an be excluded because they do not have nonzero gradient contribu-
ions. Furthermore, we adopt the Liang–Barsky clipping algorithm [32]
o determine whether a pixel is intersected with current triangle. As
hown in Fig. 4, a pixel intersects with the triangle only if at least one
dge of the triangle is intersected with the pixel grid.

To further improve the efficiency of our method, we exploit the
act that only pixels at the object boundary have nonzero gradient
ontribution. Therefore, edge detection is performed on the rendered
mage and computation is only required at those boundary pixels, as
hown in Fig. 5.

Consider a pixel at the boundary in the 𝑖th row and 𝑗th column, the
artial derivative of pixel intensity with respect to the location of 𝑘th

vertices 𝑣𝑘, denoted as 𝜕𝐼(𝑖,𝑗)
𝜕𝑣𝑘

, is to be computed. We assume that there
re 𝑁𝑒 edges consisted of 𝑣𝑘 intersecting with the pixel in the 𝑖th row
nd 𝑗th column. The derivative of the pixel intensity 𝐼(𝑖, 𝑗) with respect
o the location of 𝑣𝑘 can be expressed as follows:

𝜕𝐼(𝑖, 𝑗)
𝜕𝑣𝑘

=

⎧

⎪

⎨

⎪

⎩

∑𝑁𝑒
𝑛=1

𝜕𝐼(𝑖,𝑗)
𝜕𝑣𝑛𝑘

, if 𝑁𝑒 > 0

0, if 𝑁𝑒 = 0
(17)

where 𝜕𝐼(𝑖,𝑗)
𝑛 represents the derivative computed by the 𝑛th edge.
𝜕𝑣𝑘



Journal of Visual Communication and Image Representation 73 (2020) 102960Z. Wu et al.
Fig. 4. Several intuitive examples illustrating how to determine whether a triangle is intersected with a pixel grid.
Fig. 5. The boundary pixels are extracted to reduce computational efforts.

Fig. 6. Comparison of per-pixel gradient among our method, N3MR, and finite
difference (Diff). From the first row to the third row, the gradients are with respect to
moving right, rotating anti-clockwise, and scaling up respectively.

3.4. Per-pixel gradient visualization

We visualize per-pixel gradients generated by our differentiable
renderer, N3MR and finite difference to demonstrate the effectiveness
of our method. In finite difference method, gradients are approxi-
mated by subtracting two rendered images and then dividing the result
by the small change in object parameter, thereby resulting a good
approximation of per-pixel gradients.

As shown in Fig. 6, our per-pixel gradients are roughly the same as
the finite difference. In addition, our method produces smoother and
more reasonable results than finite difference because finite difference
introduces errors from numerical approximation in the forward render-
ing pass. In the visualized results of N3MR, nonzero gradients are found
outside the object silhouette, which is unreasonable because gradients
should be zero except for the boundary of the object.
5

In summary, our differentiable renderer can generate accurate gra-
dients with respect to vertex location, and thus enable the gradient-
based optimization for 3D pose estimation.

4. 3D pose estimation

We perform experiments of 3D pose estimation based on a statistical
body shape model by using our proposed differentiable silhouette
renderer to show the effectiveness of our method. Following the work
of [28], an iteratively optimization-based method is presented to es-
timate the pose parameters of the statistical body shape model by
minimizing the error between reprojected and ground truth silhouettes.
The images and 3D ground truth leveraged in the experiments are
obtained from a 3D pose dataset named UP-3D [33]. Different from
previous works, this study does not necessitate 2D and 3D joint ground
truth for experiments of 3D pose estimation.

4.1. Statistical body shape model

We use a statistical body shape model named SMPL [26] as our
representation of 3D poses. Essential notations of the SMPL model are
provided here. The SMPL model can be viewed as a function (𝛽, 𝜃;𝛷),
where 𝛽 denotes the shape parameters, 𝜃 denotes the pose parameters,
and 𝛷 denotes the fixed parameters learned from a dataset with body
scans [34]. The outputs of the SMPL function are vertices 𝑃 ∈ R𝑁×3

with 𝑁 = 6890 of a body mesh. The shape parameters 𝛽 ∈ R10 are the
linear coefficients of the principal body shapes. The pose parameters
𝜃 ∈ R24×3 are expressed in axis and angle representations; they define
the relative rotation among parts of the skeleton. The 3D joints 𝐽 ∈
R24×3 are obtained conveniently by a sparse linear combination of mesh
vertices.

The shape parameters 𝛽 are fixed in our experiments, and our task
is to optimize the pose parameters 𝜃 to minimize the errors between
the ground truth and reprojected silhouettes.

4.2. Data preparation

We assume that only images and multi-viewpoint silhouettes are
available in the 3D pose estimation task. The ground truth silhouettes
are generated by rendering the 3D ground truth meshes of UP-3D [33]
from four azimuth angles (with step of 90◦) with fixed elevation angles
(0◦) under the same camera setup illustrated in Fig. 7. The resolution
of the silhouettes is set to 64 × 64.

4.3. Method

Given a single image 𝐼 and its multi-viewpoint 2D silhouettes {𝑆𝑖},
we optimize the pose parameters of SMPL by minimizing a weighted
sum of error terms. The differentiable silhouette rendering process is



Journal of Visual Communication and Image Representation 73 (2020) 102960Z. Wu et al.
Fig. 7. The ground truth silhouettes for supervision are generated by projecting the ground truth 3D model to the image plane by cameras in different viewpoints.
denoted as , and the silhouette error term 𝐸𝑠𝑙 can be presented as
follows:

𝐸𝑠𝑙 =
𝑁𝑠
∑

𝑖=1
‖𝑖(𝑃 ) −𝑖(𝑃 )‖22

=
𝑁𝑠
∑

𝑖=1
‖𝑖(𝑃 ) − 𝑆𝑖‖

2
2

=
𝑁𝑠
∑

𝑖=1
‖𝑖((𝛽, 𝜃;𝛷)) − 𝑆𝑖‖

2
2

(18)

where 𝑃 and 𝑃 denote the ground truth and estimated vertices, re-
spectively. 𝑁𝑠 denotes the total number of silhouettes, 𝑖 denotes
the camera in the 𝑖th position, and 𝑆𝑖 denotes the 𝑖th ground truth
silhouette.

In addition, a self-intersection penalty term (SPT) 𝐸𝑠𝑝𝑡 from [35] is
adopted to prevent the body model from self-intersection. The SPT term
can be presented as follows:

𝐸𝑠𝑝𝑡 =
𝑁𝑠𝑒𝑐
𝑁𝑣

(19)

where 𝑁𝑠𝑒𝑐 denotes the number of vertices in the self-intersection
region, and 𝑁𝑣 denotes the total number of vertices.

The backward gradients of 𝐸𝑠𝑝𝑡 are obtained by a hand-designed
algorithm which can produce gradients to pull vertices out of the self-
intersection region. The details of this algorithm are beyond the scope
of this study, we refer the interested readers to [35] for additional
details.

Overall, the objective function can be written as the weighted sum
of the two error terms above, namely

𝐸 = 𝐸𝑠𝑙 + 𝜆𝐸𝑠𝑝𝑡 (20)

where 𝜆 is a scalar weight.

5. Experiments

This section provides the details of our experimental setup. More-
over, the results of qualitative and quantitative comparison are pre-
sented to demonstrate the effectiveness of our method.

5.1. Experimental setup

5.1.1. Dataset
Our proposed method is tested on UP-3D [33] for evaluation. This

dataset contains color images and corresponding ground truth 3D pose
represented as pose parameters of the SMPL model. The results on the
subset of UP-3D selected by Tan et al. [36] to limit the range of global
rotation of SMPL models are reported in the present work given that
our iterative optimization-based method is sensitive to the initial pose.
6

Fig. 8. Detail of SMPL mesh model. The SMPL mesh model is a vertex-based model
that accurately represents body shapes by vertices and triangles.

5.1.2. Evaluation metric
For quantitative evaluation, the per-vertex error from [29] is used

as a metric to evaluate the accuracy of 3D poses generated by different
methods. The surface of body mesh is represented as vertices and
triangles in Fig. 8. The accuracy of pose estimation can be effectively
evaluated by measuring the error of each vertex, and the per-vertex
error 𝐸𝑝 can be presented as follows:

𝐸𝑝 =
1
𝑁𝑣

𝑁𝑣
∑

𝑖=1
‖𝑃𝑖 − 𝑃𝑖‖2 (21)

where 𝑁𝑣 denotes the total number of vertices, 𝑃𝑖 denotes the esti-
mated location of vertices, and 𝑃𝑖 denotes the ground truth location
of vertices.

5.1.3. Implementation details
The resolution of the output images of the differentiable renderer

is set to 64 × 64, and the multiple of anti-aliasing 𝐹 is set to 4.
The number of silhouettes 𝑁𝑠 is set to 4. Our code is implemented in
C++ and CUDA with interfaces to the automatic differentiation library
PyTorch [37] to allow the use of their built-in optimizers and easily
optimize the pose parameters of SMPL model. The objective function is
minimized with Adam optimizer [38] with 𝛼 = 1.5×10−4, 𝛽1 = 0.9, and
𝛽2 = 0.999. 𝜆 in Eq. (20) is set to 0.001 across all experiments.

5.2. Qualitative comparison

We compare our differentiable renderer with N3MR [4] by con-
ducting 3D pose estimation in the same experimental setup. We also
compare our results with that of direct prediction method named
learning to estimate 3D human pose and shape from a single color image
(L2EPS) by Pavlakos et al. [29] to demonstrate the effectiveness of our
approach.



Journal of Visual Communication and Image Representation 73 (2020) 102960Z. Wu et al.
Fig. 9. Visualized results of 3D pose estimation by different methods. From left to right, we show the input images, ground truth, the results obtained by our method, the results
obtained by N3MR [4] and results of L2EPS [29].
.

Fig. 10. Per-vertex error curves of our method and N3MR in iterative optimization.

The results in Fig. 9 indicate that the N3MR suffers from local
minima, which often results in prediction failure. The optimization
process of N3MR is unstable and tends to fall in local minima due to
the inconsistency between forward and backward passes. By contrast,
the results of our approach appear more appealing and are comparable
to that of supervised method [29]. The consistency between forward
and backward passes of our differentiable renderer guarantees the
optimization stability.

In practice, 3D and 2D joint ground truth are tedious and difficult to
obtain. Hence, our method is significant because it facilitates 3D pose
estimation without any 2D joint location and 3D ground truth.

5.3. Quantitative comparison

The quantitative evaluation on per-vertex error with different ap-
proaches is shown in Table 1. Our differentiable renderer is superior
to N3MR [4] in 3D pose estimation; however, it is not as good as
L2EPS [29]. The L2EPS method leverages 3D ground truth, whereas
our approach only leverages 2D silhouettes and predicts 3D pose in an
7

Table 1
Quantitative comparison of accuracy and running time with other prior methods.

Method Per-vertex error Runtime Training time

L2EPS [29](supervised) 117.7 mm 233.5 ms about 3 days
IDSL [36] 189.0 mm 196.3 ms about 2 days
N3MR [4](iterative) 172.2 mm 5.4 s None
Ours(iterative) 142.8 mm 3.8 s None

Table 2
Quantitative results of different rendering resolution and whether anti-aliasing is applied

Resolution Anti-aliasing Per-vertex error (mm)

32 × 32 No 181.9
32 × 32 Yes 173.7
64 × 64 No 153.4
64 × 64 Yes 142.8

unsupervised manner. Our method outperforms the Indirect Deep Struc-
tured Learning (IDSL) for 3D pose estimation by Tan et al. [36], whose
differentiable renderer was obtained by training a neural network.

We also report the running time of those methods in Table 1. Al-
though L2EPS and IDSL run significantly faster than optimization-based
methods, they require long-time training; thus, they cannot output
acceptable results immediately. For a distinct comparison of running
time between our method and N3MR, we present the error curves of
iterative optimization in Fig. 10. Evidently, our approach converges
faster than N3MR, whereas the curve of N3MR tends to oscillate and
converge to a larger error than our method.

5.4. Ablation analysis

In this section, we conduct controlled experiments to validate the
necessity of different components.

5.4.1. SPT
We conduct an experiment with and without SPT to investigate its

influence on 3D pose estimation. We visually compare the results of 3D
pose estimation with and without SPT in Fig. 11. These results indicate
that the estimated poses without SPT suffers from self-intersection,
whereas those with SPT obtains more reasonable poses.



Journal of Visual Communication and Image Representation 73 (2020) 102960Z. Wu et al.
Fig. 11. Results of 3D pose estimation with and without SPT term. From left to right:
input image, ground truth, prediction with SPT term and prediction without SPT term.

Fig. 12. Elapsed time of one iteration of our method and N3MR under different
resolution setups.

5.4.2. Anti-aliasing
We conduct a quantitative comparison of 3D pose estimation by

differentiable renderers with and without anti-aliasing to reveal the
importance of anti-aliasing in the forward pass of our differentiable
renderer. The results are shown in Table 2. These results reveal that
anti-aliasing can effectively improve the accuracy of 3D pose estima-
tion.

5.5. Running time analysis

We conduct experiments using our method with different resolu-
tions and compare it with N3MR [4] to reveal the efficiency of our
differentiable renderer. We conduct running time comparison between
our method and N3MR on both CPU and GPU to show the efficiency
of our method on CPU and GPU. However, N3MR does not have CPU
version. For fair comparison, we implement the CPU version of N3MR
8

Table 3
Elapsed time (ms) of one iteration of our method and N3MR under different resolution
setups.

Resolution Ours(CPU) Ours(GPU) N3MR(CPU) N3MR(GPU)

16 × 16 15.98 13.61 10.38 12.38
32 × 32 16.96 13.82 10.71 12.70
64 × 64 17.28 13.97 12.28 13.47
128 × 128 19.23 14.77 20.01 15.51
256 × 256 25.97 17.95 72.02 22.56
512 × 512 48.97 29.94 365.00 47.85
1024 × 1024 111.10 74.94 1828.69 197.46

from their released GPU version. All experiments in this section are
performed on a laptop with Intel(R) Core(TM) i7-8750H processor and
NVIDIA GeForce GTX 1060 graphic card. We use the Stanford Bunny
as input mesh. Table 3 and Fig. 12 present the elapsed time of a single
forward and backward passes of the two methods.

In resolution setups lower than 128 × 128, no significant difference
is found between our method and N3MR on GPU. In addition, our
approach is slightly slower than N3MR on CPU. This is attributed to
two reasons, as follows: first, our method requires rendering an image
with 16 times higher resolution than that of N3MR, resulting in large
computation and long elapsed time in the forward pass. Second, the
implementation of N3MR and our method is similar. Both methods
traverse all the triangles in the mesh to compute derivatives for each
edge. Our method achieves high efficiency by using an analytical
method to avoid repeatedly accessing the frame buffers. However, this
advantage is insignificant under low resolution setup.

In resolution setup higher than 128 × 128, we observe up to 16X
and 2X speedup over N3MR on CPU and GPU respectively. These
results demonstrate that our method is more efficient than N3MR under
high-resolution setup.

6. Conclusion

We propose a novel method to obtain analytical derivatives for
differentiable silhouette renderer. Experiments of 3D pose estimation
by silhouette consistency are conducted to show the effectiveness and
efficiency of our proposed method. Different from N3MR [4] that uses
a hand-design approach to obtain derivatives, our proposed method de-
rives the analytical derivatives on the basis of the continuous definition
of pixel intensities. Furthermore, we adopt anti-aliasing to guarantee
the consistency between forward and backward passes, thereby achiev-
ing optimization accuracy and stability. The efficiency can be improved
by skipping irrelevant pixels because we only focus on synthesizing sil-
houettes. Experimental results indicate that our method has efficiency
and accuracy superiority to N3MR [4] in 3D pose estimation.

One of the main limitations of our method is that our algorithm
is derived on the basis of the assumption that pixel intensities have
only two possible values, and thus only works for silhouette renderer.
This characteristic restricts its application in inverse graphics. Another
limitation is that our method cannot offer significant speedup under
low-resolution setups.

Future direction of this work may include generalizing our method
to obtain analytical derivatives with a continuous definition of pixel
intensities. Furthermore, extending this approach to obtain analytical
derivatives for texture and lighting parameters is interesting.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.



Journal of Visual Communication and Image Representation 73 (2020) 102960Z. Wu et al.
Acknowledgments

This research was funded by the National Natural Science Foun-
dation of China under Grant 61633019, the Science Foundation of
Chinese Aerospace Industry under Grant JCKY2018204B053 and the
Autonomous Research Project of the State Key Laboratory of Industrial
Control Technology, China (Grant No. ICT1917).

References

[1] T. Whitted, An improved illumination model for shaded display, in: ACM
Siggraph 2005 Courses, ACM, 2005, p. 4.

[2] M. de La Gorce, D.J. Fleet, N. Paragios, Model-based 3d hand pose estimation
from monocular video, IEEE Trans. Pattern Anal. Mach. Intell. 33 (9) (2011)
1793–1805.

[3] M.M. Loper, M.J. Black, OpenDR: An approximate differentiable renderer, in:
European Conference on Computer Vision, Springer, 2014, pp. 154–169.

[4] H. Kato, Y. Ushiku, T. Harada, Neural 3d mesh renderer, in: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp.
3907–3916.

[5] S. Liu, W. Chen, T. Li, H. Li, Soft rasterizer: Differentiable rendering for
unsupervised single-view mesh reconstruction, 2019, arXiv preprint arXiv:1901.
05567.

[6] I. Gkioulekas, A. Levin, T. Zickler, An evaluation of computational imaging
techniques for heterogeneous inverse scattering, in: European Conference on
Computer Vision, Springer, 2016, pp. 685–701.

[7] V.K. Mansinghka, T.D. Kulkarni, Y.N. Perov, J. Tenenbaum, Approximate
bayesian image interpretation using generative probabilistic graphics programs,
in: Advances in Neural Information Processing Systems, 2013, pp. 1520–1528.

[8] T.M. Li, M. Aittala, F. Durand, J. Lehtinen, Differentiable monte carlo ray tracing
through edge sampling, in: SIGGRAPH Asia 2018 Technical Papers, ACM, 2018,
p. 222.

[9] J. Zienkiewicz, A. Davison, S. Leutenegger, Real-time height map fusion using dif-
ferentiable rendering, in: 2016 IEEE/RSJ International Conference on Intelligent
Robots and Systems, IROS, IEEE, 2016, pp. 4280–4287.

[10] G. Liu, D. Ceylan, E. Yumer, J. Yang, J.M. Lien, Material editing using a
physically based rendering network, in: Proceedings of the IEEE International
Conference on Computer Vision, 2017, pp. 2261–2269.

[11] E. Richardson, M. Sela, R. Or-El, R. Kimmel, Learning detailed face reconstruction
from a single image, in: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2017, pp. 1259–1268.

[12] A. Tewari, M. Zollhofer, H. Kim, P. Garrido, F. Bernard, P. Perez, C. Theobalt,
Mofa: Model-based deep convolutional face autoencoder for unsupervised monoc-
ular reconstruction, in: Proceedings of the IEEE International Conference on
Computer Vision, 2017, pp. 1274–1283.

[13] A. Tewari, M. Zollhöfer, P. Garrido, F. Bernard, H. Kim, P. Pérez, C. Theobalt,
Self-supervised multi-level face model learning for monocular reconstruction at
over 250 hz, in: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2018, pp. 2549–2559.

[14] V. Deschaintre, M. Aittala, F. Durand, G. Drettakis, A. Bousseau, Single-image
svbrdf capture with a rendering-aware deep network, ACM Trans. Graph. 37 (4)
(2018) 128.

[15] A. Kundu, Y. Li, J.M. Rehg, 3d-rcnn: Instance-level 3d object reconstruction via
render-and-compare, in: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2018, pp. 3559–3568.

[16] K. Genova, F. Cole, A. Maschinot, A. Sarna, D. Vlasic, W.T. Freeman, Unsuper-
vised training for 3d morphable model regression, in: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2018, pp. 8377–8386.
9

[17] T.H. Nguyen-Phuoc, C. Li, S. Balaban, Y. Yang, RenderNet: A deep convolutional
network for differentiable rendering from 3D shapes, in: Advances in Neural
Information Processing Systems, 2018, pp. 7891–7901.

[18] D. Eigen, C. Puhrsch, R. Fergus, Depth map prediction from a single image
using a multi-scale deep network, in: Advances in Neural Information Processing
Systems, 2014, pp. 2366–2374.

[19] A. Saxena, S.H. Chung, A.Y. Ng, 3-d depth reconstruction from a single still
image, Int. J. Comput. Vis. 76 (1) (2008) 53–69.

[20] N. Wang, Y. Zhang, Z. Li, Y. Fu, W. Liu, Y.G. Jiang, Pixel2mesh: Generating 3d
mesh models from single rgb images, in: Proceedings of the European Conference
on Computer Vision, ECCV, 2018, pp. 52–67.

[21] C.B. Choy, D. Xu, J. Gwak, K. Chen, S. Savarese, 3d-r2n2: A unified approach
for single and multi-view 3d object reconstruction, in: European Conference on
Computer Vision, Springer, 2016, pp. 628–644.

[22] H. Fan, H. Su, L.J. Guibas, A point set generation network for 3d object
reconstruction from a single image, in: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2017, pp. 605–613.

[23] M. Tatarchenko, A. Dosovitskiy, T. Brox, Octree generating networks: Efficient
convolutional architectures for high-resolution 3d outputs, in: Proceedings of the
IEEE International Conference on Computer Vision, 2017, pp. 2088–2096.

[24] S. Tulsiani, T. Zhou, A.A. Efros, J. Malik, Multi-view supervision for single-view
reconstruction via differentiable ray consistency, in: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2017, pp. 2626–2634.

[25] J. Wu, C. Zhang, T. Xue, B. Freeman, J. Tenenbaum, Learning a probabilistic la-
tent space of object shapes via 3d generative-adversarial modeling, in: Advances
in Neural Information Processing Systems, 2016, pp. 82–90.

[26] M. Loper, N. Mahmood, J. Romero, G. Pons-Moll, M.J. Black, SMPL: A skinned
multi-person linear model, ACM Trans. Graph. 34 (6) (2015) 248.

[27] D. Anguelov, P. Srinivasan, D. Koller, S. Thrun, J. Rodgers, J. Davis, SCAPE:
shape completion and animation of people, ACM Trans. Graph. 24 (3) (2005)
408–416.

[28] F. Bogo, A. Kanazawa, C. Lassner, P. Gehler, J. Romero, M.J. Black, Keep it
SMPL: Automatic estimation of 3D human pose and shape from a single image,
in: European Conference on Computer Vision, Springer, 2016, pp. 561–578.

[29] G. Pavlakos, L. Zhu, X. Zhou, K. Daniilidis, Learning to estimate 3D human pose
and shape from a single color image, in: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2018, pp. 459–468.

[30] X. Yan, J. Yang, E. Yumer, Y. Guo, H. Lee, Perspective transformer nets: Learning
single-view 3d object reconstruction without 3d supervision, in: Advances in
Neural Information Processing Systems, 2016, pp. 1696–1704.

[31] S. Marschner, P. Shirley, Fundamentals of Computer Graphics, CRC Press, 2015.
[32] Y.D. Liang, B.A. Barsky, A New Concept and Method for Line Clipping,

CUMINCAD, 1984.
[33] C. Lassner, J. Romero, M. Kiefel, F. Bogo, M.J. Black, P.V. Gehler, Unite

the people: Closing the loop between 3d and 2d human representations, in:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2017, pp. 6050–6059.

[34] K.M. Robinette, S. Blackwell, H. Daanen, M. Boehmer, S. Fleming, Civilian Amer-
ican and European Surface Anthropometry Resource (CAESAR), Final Report.
Volume 1. Summary, Technical Report, Sytronics Inc Dayton Oh, 2002.

[35] Z. Wu, W. Jiang, H. Luo, L. Cheng, A novel self-intersection penalty term for
statistical body shape models and its applications in 3D pose estimation, Appl.
Sci. 9 (3) (2019) 400.

[36] V. Tan, I. Budvytis, R. Cipolla, Indirect deep structured learning for 3d human
body shape and pose prediction, 2018.

[37] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A.
Desmaison, L. Antiga, A. Lerer, Automatic differentiation in pytorch, 2017.

[38] D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, 2014, arXiv
preprint arXiv:1412.6980.

http://refhub.elsevier.com/S1047-3203(20)30185-1/sb1
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb1
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb1
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb2
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb2
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb2
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb2
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb2
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb3
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb3
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb3
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb4
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb4
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb4
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb4
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb4
http://arxiv.org/abs/1901.05567
http://arxiv.org/abs/1901.05567
http://arxiv.org/abs/1901.05567
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb6
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb6
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb6
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb6
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb6
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb7
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb7
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb7
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb7
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb7
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb8
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb8
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb8
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb8
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb8
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb9
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb9
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb9
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb9
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb9
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb14
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb14
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb14
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb14
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb14
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb17
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb17
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb17
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb17
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb17
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb18
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb18
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb18
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb18
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb18
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb19
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb19
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb19
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb21
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb21
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb21
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb21
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb21
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb25
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb25
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb25
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb25
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb25
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb26
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb26
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb26
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb27
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb27
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb27
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb27
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb27
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb28
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb28
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb28
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb28
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb28
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb30
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb30
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb30
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb30
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb30
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb31
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb32
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb32
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb32
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb34
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb34
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb34
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb34
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb34
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb35
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb35
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb35
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb35
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb35
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb36
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb36
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb36
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb37
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb37
http://refhub.elsevier.com/S1047-3203(20)30185-1/sb37
http://arxiv.org/abs/1412.6980

	Analytical derivatives for differentiable renderer: 3D pose estimation by silhouette consistency
	Introduction
	Related work
	Differentiable renderer
	Image-based 3D reconstruction

	Analytical derivatives for rasterization
	Forward rendering
	Derivative computation
	Backward gradient flow
	Per-pixel gradient visualization

	3D pose estimation
	Statistical body shape model
	Data preparation
	Method

	Experiments
	Experimental setup
	Dataset
	Evaluation metric
	Implementation details

	Qualitative comparison
	Quantitative comparison
	Ablation analysis
	SPT
	Anti-aliasing

	Running time analysis

	Conclusion
	Declaration of competing interest
	Acknowledgments
	References


